Review of Injector Setup and Performance with Au and d

C. J. Gardner, 10 July 2006

Bird's Eye View of Setup

Tandem Delivery of Ions

Tandem Performance and Reliability

- 14 MV terminal voltage and 600 terminal foils for delivery of gold; 8.7 MV for deuterons
- Sparks per week at 14 MV?
- Terminal foil consumption: 4 to 6 per day => 100 days for Au; a single foil lasts many days for d
- Up to 4 days to put in a new set of foils, but this has been done in as little as 48 hours
- 100 object foils; each lasts 3 days. Up to 8 hours to put in a new set.

Gold and Deuteron Intensities

- 1000 microsecond pulse width for Au32+ ions;
 250 microseconds for deuterons
- TTB transport efficiency 85 to 95%
- Peak of 39 x 10⁹ Au32+ ions (in 4 pulses) at end of TTB line; 30 x 10⁹ more common
- Peak of 154 x 10^10 deuterons (in 8 pulses) at end of TTB line

Booster Injection

Booster Acceleration

Standard gold setup 0.93 to 101 MeV per nucleon

Merge

Squeeze

Brennan's new gold setup; doubles the intensity per bunch

Merge

Standard deuteron setup 8.7 to 506 MeV per nucleon

Standard Magnetic Cycle for Gold

Booster Merge and Squeeze Cycle

Magnetic Cycle for Deuterons

Transfer of one Booster load to AGS

Transfer of one Booster load to AGS

Transfer to AGS

8 transfers of 3 for Brennan's new gold setup

Booster-AGS Timing

Au De-bunch, and Re-bunch at h = 4

Standard gold setup

4 Booster loads of 6 bunches become 4 AGS bunches

Brennan's "Merge and Squeeze"

New gold setup

8 Booster loads of 3 bunches become 4 AGS bunches

d De-bunch, and Re-bunch at h = 4

Standard deuteron setup

8 Booster loads of 1 bunch become 4 AGS bunches

New Ags Merge Scheme to Eliminate De-bunch Re-bunch (Blaskiewicz)

- Eliminate instability due to low dp/p
- Bunch-to-bucket transfer into Ags h = 24 buckets as before
- Bring on harmonics h = 8 and h = 16 to merge 24 bunches into 8
- Bring on harmonic h = 4 to merge the 8 bunches into 4
- For deuterons do 8 to 4 merge?

Ags Extraction, RHIC Injection

- In Ags accelerate to extraction energy on h = 12 for Au77+ and h = 8 for deuterons
- Bhro = 90 Tm for Au79+ at RHIC injection (value for gold-on-gold = 81.1137824 Tm)
- Revolution frequency same for Au79+ and deuterons at RHIC injection
- Brho = 92.3381768 Tm for Au77+ at Ags ext
- Brho = 72.711904 Tm for d at Ags ext

Ags A5 Kicker Timing (Standard Au)

For gold T = 260 ns; T + dt = 265 nsNeed W = 1350 ns; TR = TF < 215 ns

A5 Kick Timing for Brennan Scheme

For gold T = 260 ns; T + dt = 265 ns Need W = 606 ns; TR = TF < 179 ns. Use for deuterons too (T = 443 ns)

A5 Kick Observations and Questions

- For standard gold scheme, end bunches of each transfer get rattled (pulse not quite wide enough)
- Short pulse mode is used for new scheme; is it wide enough? If not can it be made so?
- Short pulse also used for deuterons; is it too wide for them. This would cause clipping of the last of the 8 bunches transfered.

Phase Mismatch (Standard Au setup)

Here T = 260 ns and dt = 5 ns. The displacement between bunch and bucket center is 5 dt/2 in outermost buckets.

Phase Mismatch (New Au Setup)

Here again T = 260 ns and dt = 5 ns, but now the displacement between bunch and bucket centers is just dt in outer buckets

Present Set of BTA Foils

Set of 7 foils plus 1 blank slot. Each foil can be rotated into the beam.
(Beam direction is into the picture)

A new foil changer is to be installed during this summer shutdown. This will make "editing" the foil set much easier.

Present Set of BTA Foils

BTA Foil Calculations (Thieberger)

BTA Foil Calculations (Thieberger)

Very uniform foils yield smaller energy spread.

"Glassy" Carbon and aluminum look promising.

Renolds Wrap?

Gold Emittances (longitudinal)

- Single Bunch Emittances for Standard Setup:
- Booster Capture = 0.045/6 eV-s per nucleon
- Booster Extraction = 0.045/6 eV-s per nucleon
- Factor of 4 increase in BTA foil (0.005" C)
- Ags Injection = 0.180/6 eV-s per nucleon
- 50% increase due to filamentation in RF bucket
- Start of Acceleration = 0.270 eV-s per nucleon
- 50% increase during acceleration

Gold Emittances (longitudinal)

- Single Bunch Emittances for New Setup:
- Booster Capture = 0.045/6 eV-s per nucleon
- Factor of 3 increase due to merge and "squeeze"
- Booster Extraction = 0.135/6 eV-s per nucleon
- Factor of 1.6 increase in BTA foil (more uniform)
- Ags Injection = 0.216/6 eV-s per nucleon
- 25% increase due to filamentation in RF bucket
- Start of Acceleration = 0.270 eV-s per nucleon

Deuteron Emittances (longitudinal)

- Single Bunch Emittances for Deuteron Setup
- Booster Capture = 0.080 eV-s per nucleon
- Factor of 3 increase due to merge
- Booster Extraction = 0.240 eV-s per nucleon
- Ags Injection = 0.240 eV-s per nucleon
- Factor of 3 increase due to merge
- Ags Extraction = 0.720 eV-s per nucleon

Transverse Emittances

- Assume Booster H and V acceptances are filled during multi-turn injection
- This gives normalized H and V emittances of 8.3pi and 3.9pi for Au; 25pi and 12pi for d
- Note that BetaGamma at Booster injection is 3 times larger for d than it is for Au
- RHIC wants normalized emittances less than 10pi

Gold Intensities (standard setup)

- End of TTB line = $4 \times 4.3 \times 10^{9}$ (Au32+)
- Booster Injection = $4 \times 3.0 \times 10^9 \{70\%\}$
- Booster Extraction = $4 \times 2.4 \times 10^9 \{80\%\}$
- Ags Injection = $4 \times 1.4 \times 10^{9}$ (Au77+) $\{58\%\}$
- Ags Extraction = $4 \times 1.3 \times 10^9 \{93\%$

Deuteron Intensities

- (Logbook entry 11 March 03)
- End of TTB = $8 \times 16 \times 10^{10}$ (deuterons)
- Booster Injection = $8 \times 8 \times 10^{10} \{50\%\}$
- Booster Extraction = $8 \times 7.2 \times 10^{10} \{90\%\}$
- Ags Injection = $8 \times 6.7 \times 10^{10} \{93\%\}$
- Ags Extraction = $4 \times 13.1 \times 10^{10} \{98\%\}$

Mode Switching

- Several non-ppm devices must be switched to different operating values when going from gold to deuterons or from deuterons to gold
- The mode switching application shown on the next 2 slides does all this
- Switching time is 3 to 5 minutes

